
DS—Multithreading Page 1

Multithreading
by Terry Sergeant

Contents

1 What and Why 1

2 Mechanics of Multithreading 1
2.1 Background and Context 1
2.2 A Java Example 1

3 Issues with Multithreading 2
3.1 We Have a Problem 2
3.2 Semaphores . 3
3.3 Monitors . 4

4 Classic Problems and Their Solutions 4
4.1 Readers-Writers Problem 4

4.1.1 A Reader-Preference Solution 5
4.1.2 A Writer-Preference Solution 5

4.2 Producer-Consumer Problem 5
4.2.1 A Partial Producer-Consumer Solution . . . 6
4.2.2 A Better Producer-Consumer Solution . . . 6

1 What and Why

In this course we view multithreading as a programming technique
that allows a single program to instruct the computer to perform
multiple sections of code concurrently. In a single-threaded pro-
gram the statements of the program are performed in a specific
order and we assume that once a statement is issued, it completes
before the next statement begins. In a multi-threaded program
we can launch multiple “threads” of execution that happen “at
the same time” with no guarantee as to which will be complete
first.

In many sections of code we want the assurance that state-
ments will happens in a specified order because some statements
require results from previous statements. So, multi-threaded pro-
grams are not a replacement for single-threaded programs but
instead are used in specific situations.

Some examples of when multi-threaded programs might be use-
ful:

� Suppose you have a menu-driven program and you also want
to display a clock at the top of the screen. You can have one
thread be responsible for updating the clock and another
thread to handle the rest of the program. These two threads
should run at the same time.

� Suppose you have a web-based game that allows players to
connect as the game proceeds. You can assign a separate
thread to handle communication with each player rather
than trying to figure out how to handle multiple connec-
tions within your code. That is, your code can focus on one
connection at a time.

2 Mechanics of Multithreading

2.1 Background and Context

In operating systems lingo a process is a program that has been
started. A typical desktop computer will have dozens of processes
that are started. In a single CPU (single core) system only one of
the started processes can be actually running at a time. The OS
will assign a process to be run for a short period of time and then
remove the process from the running state and will assign another
process to be run. By switching among the processes rapidly it
creates the illusion that they are all running at the same time.

A thread is a “lightweight process”. Threads that have the
same parent will share memory and other resources so creating ad-
ditional threads is faster than creating a completely new/separate
process. Also, since threads share memory and files they can com-
municate with one another easily using these shared resources.

So, when we write a multi-threaded program we have a parent
process that will create multiple threads. The threads will be ex-
ecuted concurrently (by having the OS assign them to the CPU
for short periods).

2.2 A Java Example

Java supports a variety of ways to create multithreaded programs:

� Inherit from the Thread class

� Implement the Runnable interface

� Use the Callable and Future classes

In our examples we will focus on implementing the Runnable

interface because it is perhaps simpler to learn initially and is
flexible enough for our purposes. If you want to become a mul-
tithreading guru then you might consider mastering the use of
Callable and Future.

NOTE: This and other examples are available on-
line at: https://josephus.hsutx.edu/classes/ds/source/

multithreading/

ThreadDemo3.java
1 /**

2 * Demonstrates how to create two threads and assign each to

3 * calculate a path length for the provided hailstone sequence.

4 */

5

6 import java.util.Scanner;

7

8 public class ThreadDemo3

9 {

10 public static void main(String [] args) throws Exception

11 {

12 Scanner kb= new Scanner(System.in);

13 Data mydata1= new Data(5);

14 Data mydata2= new Data(3);

15 Thread doit1= new Thread(new HailStone(mydata1));

16 Thread doit2= new Thread(new HailStone(mydata2));

17 doit1.start();

18 doit2.start();

19

20 doit1.join();

21 doit2.join();

22

23 System.out.println(""+doit1.getName()+" says " + mydata1);

24 System.out.println(""+doit2.getName()+" says " + mydata2);

25 }

26 }

27

28 // When implementing Runnable we must provide a method called

Data Structures Terry Sergeant

DS—Multithreading Page 2
29 // run() with void return type and no parameters.

30 class HailStone implements Runnable

31 {

32 private Data data;

33 private int mynum;

34

35 public HailStone(Data d)

36 {

37 data= d;

38 mynum= 1;

39 }

40

41 @Override

42 public void run()

43 {

44 Thread me= Thread.currentThread();

45 int m;

46 int pathLength= 0;

47 String state;

48

49 System.out.println("I am "+me.getName() +

50 " and I am working on stuff ...");

51 m= data.n; // given a number

52 while (m > 1) {

53 pathLength++; // determine number of

54 if (m%2==0) // iterations thru the

55 m= m / 2; // "hailstone" function

56 else // before reaching 1

57 m= 3*m+1;

58 }

59 data.pathLength= pathLength;

60 System.out.println("I, "+me.getName() +

61 ", am done with my work ...");

62 }

63 }

64

65

66 class Data

67 {

68 public Data(int num) { n= num; pathLength= 0; }

69 public int n; // value to calculate

70 public int pathLength; // length of path to reach 1

71 public String toString() {

72 return ""+n+" takes "+pathLength+" steps to fall";

73 }

74 }

Some things to note about this sample program:

� The parent program (main()) creates two threads (doit1
and doit2).

� Data is shared between main() and the threads by passing
an object to each threads constructor.

� The threads begin executing on lines 17–18. Calling the
start() method causes the run() method to be called.

� Calling the join() method for a thread causes main() to
wait until the given thread finishes.

� When implementing the Runnable interface you must de-
fined a method called run() that has a void return type and
take no parameters and throws no exceptions.

� Because the Data objects were created in main() and then
passed to each thread (via the constructor), any changes to
the objects are seen in main(). That is, the threads can
share memory with main() (and with each other).

Ideas for experimentation:

� Run the program several times and observe that the order
in which various statements are output can change.

� Remove the .join() commands and then run the program
several times observing the output.

3 Issues with Multithreading

Any time two or more threads are executing concurrently and ac-
cessing a shared resource you need to be aware that we don’t have
a guarantee regarding when threads will access those resources
relative to one another. This can sometimes lead to problems.

A critical section is any shared resource (or section of code)
that requires mutually exclusive access (i.e., can only be accessed
by one thread at a time). If two thread enter/access a critical sec-
tion at the same time then we have a problem. Enforcing mutual
exclusion is tricky because of the fact that threads are constantly
being started and stopped by the OS scheduler (and we don’t have
control over the scheduler). Suppose:

1. thread A enters a critical section and then is stopped by the
OS scheduler

2. the scheduler then allows thread B to run

3. thread B enters the same critical section

4. now both threads are in the critical section (which should
not happen)

3.1 We Have a Problem

Consider the following section of code:
ThreadCSProblem.java

1 /**

2 * Demonstrates what might happen when we don’t enforce mutual

3 * exclusion in a multithreaded program.

4 */

5

6 public class ThreadCSProblem

7 {

8 public static void main(String [] args) throws Exception

9 {

10 Data mydata= new Data();

11 Thread [] pool= new Thread[10];

12 int i;

13 long start,stop;

14

15 // create 10 threads all sharing the same data

16 for (i=0; i<10; i++)

17 pool[i]= new Thread(new AddEmUp(mydata));

18

19 start= System.currentTimeMillis();

20 // start all the threads

21 for (i=0; i<10; i++)

22 pool[i].start();

23

24 // wait for them to finish

25 for (i=0; i<10; i++)

26 pool[i].join();

27 stop= System.currentTimeMillis();

28

29 System.out.println("Time elapsed: " +

30 (stop-start)/1000.0+" seconds");

31 System.out.println("The variable is now: " + mydata);

32 }

33 }

34

35 class AddEmUp implements Runnable

36 {

37 private Data data;

Data Structures Terry Sergeant

DS—Multithreading Page 3
38

39 public AddEmUp(Data d)

40 {

41 data= d;

42 }

43

44 public void run()

45 {

46 int i;

47

48 for (i=0; i<10000000; i++)

49 data.addOne();

50 }

51 }

52

53 class Data

54 {

55 private int n;

56 public Data() { n= 0; }

57 public void addOne() { n++; }

58 public int getNum() { return n; }

59 public String toString() { return ""+n; }

60 }

This program shares a single integer among 10 threads. Each
thread uses a loop to increment the integer 10,000,000 times. So
when the program finishes we expect the value in the integer to
be 100,000,000. Here is the output from one of the times I ran the
program:

1 Time elapsed: 0.075 seconds

2 The variable is now: 45249154

So, why the strange, smaller-than-expected number? The
addOne() method represents a critical section. This is because
reading the current value of the number, adding one, and storing
the answer back into the variable requires multiple steps. If two
threads both read the same value and then add one to the value
and store then answer then the counter will be incremented only
once when it should have been incremented twice. Likewise, if a
thread is postponed for quite a while then it will set the value of
the integer to an “old” value when it is running again.

There are two common ways to enforce mutual exclusion in a
multithreaded program: semaphores and monitors.

3.2 Semaphores

A semaphore is a special type of counter with two supported op-
erations:

acquire() This operation attempt to access the semaphore and
if successful will decrement its counter. If the counter has
reached zero then the thread calling this method will sleep
until awakened by another process.

release() This operation will release an acquired semaphore. If
one or more threads is sleeping (because they tried and
failed to acquire the semaphore) then calling this method
will cause one of them to be awakened (at which time they
acquire the semaphore). If no threads are sleeping then the
counter is incremented.

So, to enforce mutual exclusion using a semaphore you do
something like this:

1 Semaphore sem= new Semaphore(1); // set counter to 1 initially

2 ...

3 sem.acquire();

4 // critical section code goes here

5 sem.release();

Here we use a semaphore to solve the issue with
ThreadCSProblem.java presented above.

ThreadCSSemaphore.java
1 /**

2 * One way to address the problem given in ThreadCSProblem.java:

3 * use semaphores.

4 */

5

6 import java.util.Scanner;

7 import java.util.concurrent.Semaphore;

8

9 public class ThreadCSSemaphore

10 {

11 public static void main(String [] args) throws Exception

12 {

13 Scanner kb= new Scanner(System.in);

14 Data mydata= new Data();

15 Thread [] pool= new Thread[10];

16 long start,stop;

17

18 int i;

19

20 for (i=0; i<10; i++)

21 pool[i]= new Thread(new AddEmUp(mydata));

22

23 start= System.currentTimeMillis();

24 for (i=0; i<10; i++)

25 pool[i].start();

26

27 for (i=0; i<10; i++)

28 pool[i].join();

29 stop= System.currentTimeMillis();

30

31 System.out.println("Time Elapsed : " +

32 (stop-start) / 1000.0 + " seconds");

33 System.out.println("The variable is now: " + mydata);

34 }

35 }

36

37 class AddEmUp implements Runnable

38 {

39 private Data data;

40

41 public AddEmUp(Data d) {

42 data= d;

43 }

44

45 public void run() {

46 for (int i=0; i<10000000; i++) {

47 data.addOne();

48 }

49 }

50 }

51

52 class Data

53 {

54 private Semaphore cs;

55 private int n;

56 public Data() {

57 n= 0;

58 cs= new Semaphore(1); // set counter to 1

59 }

60 public void addOne() {

61 try {

62 cs.acquire();

63 n++;

64 cs.release();

65 } catch (InterruptedException e) {

Data Structures Terry Sergeant

DS—Multithreading Page 4
66 System.out.println(e);

67 }

68 }

69 public int getNum() { return n; }

70 public String toString() { return ""+n; }

71 }

Here is the output I recorded for this program:

1 Time Elapsed : 2.68 seconds

2 The variable is now: 100000000

Some things to notice about this solution:

� we get the correct answer

� the time required to get the solution went from under a 10th
of a second to nearly 3 seconds.

� We had to handle the InterruptedException that can be
thrown when using semaphores.

� The semaphore is shared among all the threads. If each
thread had used their own semaphore then mutual exclu-
sion would not be enforced.

3.3 Monitors

A monitor is a language construct that allows you to designate
a method as a “monitor”. The compiler will add necessary code
to ensure that only one process will be allowed in the monitor at
a time. Monitors are a higher-level construct and are therefore
easier to use that semaphores in many cases. However, they also
are not as flexible as semaphores.

To designate a method as a monitor in Java you simply add
the keyword synchronized in front of the method.

Here we use a monitor to solve the issue with
ThreadCSProblem.java presented above.

ThreadCSSync.java
1 /**

2 * One way to address the problem given in ThreadCSProblem.java:

3 * monitors.

4 */

5

6 public class ThreadCSSync

7 {

8 public static void main(String [] args) throws Exception

9 {

10 Data mydata= new Data();

11 Thread [] pool= new Thread[10];

12 long start,stop;

13 int i;

14

15 for (i=0; i<10; i++)

16 pool[i]= new Thread(new AddEmUp(mydata));

17

18 start= System.currentTimeMillis();

19 for (i=0; i<10; i++)

20 pool[i].start();

21

22 for (i=0; i<10; i++)

23 pool[i].join();

24 stop= System.currentTimeMillis();

25

26 System.out.println("Time Elapsed : " +

27 (stop-start) / 1000.0 + " seconds");

28 System.out.println("The variable is now: " + mydata);

29 }

30 }

31

32 class AddEmUp implements Runnable

33 {

34 private Data data;

35

36 public AddEmUp(Data d)

37 {

38 data= d;

39 }

40

41 public void run()

42 {

43 int i;

44

45 for (i=0; i<10000000; i++)

46 data.addOne();

47 }

48 }

49

50 class Data

51 {

52 private int n;

53 public Data() { n= 0; }

54 public synchronized void addOne() { n++; }

55 public int getNum() { return n; }

56 public String toString() { return ""+n; }

57 }

Here is the output I recorded for this program:

1 Time Elapsed : 2.09 seconds

2 The variable is now: 100000000

Some things to notice about this solution:

� We get the correct answer.

� The time required to get the solution was about 2 seconds
(slightly faster than semaphore solution and much slower
than the original version that doesn’t work).

� The only change we very simple to employ! Just designate
the addOne() method as a monitor by adding the keyword
synchronized to the method definition (line 53).

LESSON: If you can use a monitor then use it. Otherwise

use a semaphore.

4 Classic Problems and Their Solutions

We will consider two classic synchronization problems. In both
cases we will present semaphore solutions because monitor solu-
tions require the use of condition variables which add complexity.

4.1 Readers-Writers Problem

Imagine an online database that allows users to read data and
write data. Reading data is a safe operation in the sense that it
is fine to have multiple users reading concurrently. When writ-
ing data, however, we begin to have issues such as encountered in
ThreadCSProblem.java above. So, when a user is writing they
should have exclusive access (no other readers or writers allowed).

There are quite a few variations of this problem. Here are a
couple:

Reader Preference In this solution no reader is kept waiting
unless a writer has already been granted access.

Writer Preference In this solution no writer is kept waiting un-
less a reader has already been granted access.

Data Structures Terry Sergeant

DS—Multithreading Page 5
Each of these solutions can allow “starvation” of processes that

are not preferred. The term starvation refers to a process that is
being indefinitely postponed from acting because it is waiting on
other processes. A more complex solution would be to avoid star-
vation (perhaps by keeping of order of arrival), but this is beyond
the scope of our inquiry.

Imagine we have multiple concurrent processes that may occa-
sionally read or write to a shared database as follows:

1 loop

2 do_some_work()

3 acquire_read_lock()

4 db.read()

5 release_read_lock()

6

7 do_some_work()

8 acquire_write_lock()

9 db.write()

10 release_write_lock()

11 end loop

So, our goal is to create code for these meth-
ods: acquire_read_lock(), release_read_lock(),
acquire_write_lock(), release_write_lock(). Of course,
these must be written to enforce the behavior required by our
problem statement. Before you look at the solutions proposed

below take a moment to jot down ideas of your own.

4.1.1 A Reader-Preference Solution

Here is one semaphore-based solution (written in pseudocode) that
gives preference to readers:

Reader-Preference
1 Semaphore mutex = 1

2 Semaphore db = 1

3 int numReaders = 0

4

5 function acquire_read_lock() {

6 mutex.acquire()

7 numReaders = numReaders + 1

8 if (numReaders == 1) {

9 db.acquire()

10 }

11 mutex.release()

12 }

13

14 function release_read_lock() {

15 mutex.acquire()

16 numReaders = numReaders - 1

17 if (numReaders == 0) {

18 db.release()

19 }

20 mutex.release()

21 }

22

23 function acquire_write_lock() {

24 db.acquire()

25 }

26

27 function release_write_lock() {

28 db.release()

29 }

Notice that the semaphores mutex and db are both initially
1. So, only one process can acquire them at a time. The db

semaphore is acquired by the first reader and is released by the
last reader. So, if a writer attempts to acquire it while any reader
is still reading, it will sleep. Likewise, if a writer has acquired the

db semaphore then the next arriving reader will sleep when it tries
to acquire it.

Now that you’ve seen an example solution to the reader-

preference version of this problem, try to tweak this solution

to produce a writer-preference version.

4.1.2 A Writer-Preference Solution

Here is one semaphore-based solution (written in pseudocode) that
gives preference to writers:

Writer-Preference
1 Semaphore writer = 1

2 Semaphore mutex = 1

3 Semaphore db = 1

4 int numReaders = 0

5

6 function acquire_read_lock() {

7 writer.acquire()

8 mutex.acquire()

9 numReaders = numReaders + 1

10 if (numReaders == 1) {

11 db.acquire()

12 }

13 mutex.release()

14 writer.release()

15 }

16

17 function release_read_lock() {

18 mutex.acquire()

19 numReaders = numReaders - 1

20 if (numReaders == 0) {

21 db.release()

22 }

23 mutex.release()

24 }

25

26 function acquire_write_lock() {

27 writer.acquire()

28 db.acquire()

29 }

30

31 function release_write_lock() {

32 db.release()

33 writer.release()

34 }

This is a so-called “weak writer preference” solution in that
when a writer finishes it is “up for grabs” as to whether the next
process to run is a reader or a writer. The benefit of this solu-
tion is that when a writer wants to write it acquires the writer

semaphore which blocks subsequent readers from acquiring the
read lock. So, when the existing readers finish the writer will gain
access to the database.

4.2 Producer-Consumer Problem

The Bounded Buffer Producer-Consumer Problem features two
distinct types of processes: producers and consumer. There can
be multiple instances of both types. Producers create some item
(e.g., widgets) and then store them in a waiting area (i.e., the
buffer). The waiting area (buffer) is of a fixed size and so can
hold only a limited number of widgets. Consumers remove items
from the waiting area and consume them.

So, we want producers and consumers to cooperate as follows:

� Both need to access the shared buffer.

� Producers should not continue to produce if the buffer gets
full.

Data Structures Terry Sergeant

DS—Multithreading Page 6
� Consumers should not continue to consume if the buffer is
empty.

� Otherwise we want producers to continue producing and
consumers to continue consuming.

4.2.1 A Partial Producer-Consumer Solution

Consider the following partial solution to the Producer-Consumer
problem. This “solution” has a couple of problems. First, it does
not treat access to the buffer (via store() and get()) as a crit-
ical section. Second, it performs a “busy wait”. Suppose a con-
sumer process is currently being executed by the CPU and that
numberOfItems is 0. This consumer will continue executing the
if-statement as long as it has the CPU and the if-statement will
continue to be false. So, its entire time using the CPU is wasted.

Partial Producer-Consumer Solution
1 int numberOfItems = 0

2

3 function producer() {

4 while (true) {

5 if (numberOfItems < BUFFER_SIZE) {

6 produce(item)

7 numberOfItems = numberOfItems + 1

8 store(item)

9 }

10 }

11 }

12

13 function consumer() {

14 while (true) {

15 if (numberOfItems > 0) {

16 get(item)

17 numberOfItems = numberOfItems - 1

18 consume(item)

19 }

20 }

21 }

Take a moment to write a solution that uses semaphores

to address the problems with this partial solution.

4.2.2 A Better Producer-Consumer Solution

Consider this semaphore-based solution:
Partial Producer-Consumer Solution

1 Semaphore mutex = 1

2 Semaphore used = 0

3 Semaphore available = BUFFER_SIZE

4

5 function producer() {

6 while (true) {

7 produce(item)

8 available.acquire()

9 mutex.acquire()

10 store(item)

11 mutex.release()

12 used.release()

13 }

14 }

15

16 function consumer() {

17 while (true) {

18 used.acquire()

19 mutex.acquire()

20 get(item)

21 mutex.release()

22 available.release()

23 consume(item)

24 }

25 }

The mutex semaphore is used to provide mutually exclusive
access to the buffer. The used semaphore tracks how many slots
in the buffer are filled and prevents a consumer from attempt-
ing to extract an item when the buffer is empty. The available

semaphore prevents a producer from storing a produced item in
the event the buffer is full.

Data Structures Terry Sergeant

