
Operating Systems
Software Methods of Enforcing Mutual Exclusion

These ”solutions” are not all correct. Some are ”correct” but are not desirable. They
all have certain limitations. One such limitation is that these are implemented for providing
mutual exclusion between two processes only.

Solution #1

For this solution assume that turn is initially 0 and that there are only two processes
requesting the critical section.

Process 0 Process 1

while (true) { while (true) {

nonCriticalSection() nonCriticalSection()

while (turn == 1) {} while (turn == 0) {}

criticalSection() criticalSection()

turn= 1 turn= 0

} }

Questions to ponder:

• What is happening?

• What could be done to make this work for n processes?

• What are some problems with this method?

Solution #2

For this solution assume that p0inside and p1inside are initially false.

Process 0 Process 1

while (true) { while (true) {

nonCriticalSection() nonCriticalSection()

while (p1inside) {} while (p0inside) {}

p0inside= true p1inside= true

criticalSection() criticalSection()

p0inside= false p1inside= false

} }

Questions to ponder:

• What is a problem with this “solution”?

• What would happen if p0inside= true and p1inside= true were moved before the
while loop?



Solution #3

For this solution assume that p0wantsToEnter and p1wantsToEnter are initially false and
that favoredProcess is initially 1.

Process 0 Process 1

while (true) { while (true) {

nonCriticalSection() nonCriticalSection()

p0wantsToEnter= true p1wantsToEnter= true

favoredProcess= 1 favoredProcess= 0

while (p1wantsToEnter && while (p0wantsToEnter &&

favoredProcess==1) {} favoredProcess==0) {}

criticalSection() criticalSection()

p0wantsToEnter= false p1wantsToEnter= false

} }

Questions to ponder:

• What is a problem with this “solution”?

• How would you extend this solution to work with n processes?

A Hardware/Software Solution

Suppose the hardware implements an indivisible testAndSet instruction that works like this:

int testAndSet(int flag)

{

if (flag==0) {

flag= 1;

return 0;

} else

return 1;

}

Here is a possible solution for n processes that uses such an instruction. Assume that
flag is initially 0.

Process i

while (true) {

nonCriticalSection()

while (testAndSet(flag) == 1) {}

criticalSection()

flag= 0

}


