
DB—SQL Page 1

SQL
by Terry Sergeant

Contents

1 Introduction 1
1.1 What is SQL? . 1
1.2 Why should I care? 1
1.3 A Brief History . 1
1.4 Examples and Exercises 1

2 SELECT Queries 1
2.1 The WHERE Clause 2
2.2 Some Exercises Using WHERE 2
2.3 Joining Tables . 2
2.4 Some Exercises Using JOIN 3
2.5 Aggregate Functions, GROUP BY, and HAVING 3

2.5.1 Aggregate Functions 3
2.5.2 The GROUP BY Clause 3
2.5.3 The HAVING Clause 3

2.6 The ORDER BY Clause 3
2.7 The SANTA Clause 3
2.8 Some Exercises Using GROUP BY, HAVING, and

ORDER BY . 4
2.9 Creating Subqueries 4
2.10 Creating and Using Views 4
2.11 Some Exercises Using Subqueries and Views 4
2.12 Some More Exercises 4

3 DELETE, INSERT, and UPDATE 4
3.1 DELETE Queries . 5
3.2 INSERT Queries . 5
3.3 UPDATE Queries . 5

4 CREATE and DROP Queries 5
4.1 CREATE Queries . 5
4.2 DROP Queries . 6

1 Introduction

1.1 What is SQL?

SQL (Structured Query Language) is typically pronounced “se-
quel” or sometimes “ess-que-ell”. It is a language for manipulating
or retrieving information from a relational database. SQL queries
are entered by typing a command.

These notes are a cursory guide to some of the core features of
SQL.

1.2 Why should I care?

� SQL has become the lingua franca for RDBMS’s.

lingua franca 1: a common language that con-
sists of Italian mixed with French, Spanish, Greek,
and Arabic and is spoken in Mediterranean ports
2: any of various languages used as common
or commercial tongues among peoples of diverse
speech.

Webster’s Ninth New Collegiate Dictionary

� If you learn SQL you will be able to create queries and ma-
nipulate databases in virtually any modern RDBMS!

� Read the above statement again.

� Read it one more time.

� Finally, SQL statements can be generated under the control
of a program.

1.3 A Brief History

SQL evolved from an IBM project/language called Sequel. It
eventually began to be used more widely and in 1986, ANSI/ISO
(American national Standards Institute / International Standards
Organization) published an SQL standard. Updated standards
followed in 1989, 1992, 1999, and 2003.

Who gives ANSI/ISO the right to say what SQL should

look like?

1.4 Examples and Exercises

The examples and exercises given below assume the existence of
three related tables that represent information about books, au-
thors, and publishers. The tables are assumed to be arranged as
follows:

� book=(isbn, title, author id, num pages, publisher id, year)

� author=(author id, firstname, lastname)

� publisher(publisher id, name, location)

2 SELECT Queries

A SELECT statement is used to retrieve information from a
database in the form of a list. Here is the form for the SELECT

statement.

1 SELECT field-list

2 FROM table-list

3 WHERE conditions

4 GROUP BY field-name

5 HAVING conditions

6 ORDER BY field-list

It should be noted that:

� SQL is a free format language. So, the entire SELECT state-
ment could be written on a single line or could be spread
out over several lines as show below.

� In long SQL statements it can be more readable to spread
over several lines.

� Not every SELECT statement uses all of the clauses given
above. The simplest statements will use only SELECT and
FROM.

� The field-list is simply a list of fields you want to see, sep-
arated by commas. If you want to see all the fields simply
put an asterisk (*).

� The table-list is a list of tables from which the query should
be drawn. If multiple tables are listed the DBMS will per-
form a cross-product of the tables listed. Do you know

what a cross-product is?
Database Systems Terry Sergeant

DB—SQL Page 2
Example 1 Here is a simple SELECT query that lists all fields in
the table book.

1 SELECT * FROM book;

2.1 The WHERE Clause

� The WHERE conditions clause is used to specify the criteria
necessary for matching records.

� This clause can be simple or quite complex, but is basically
used to restrict the number of responses coming from the
query.

� Boolean operator such as not, and, and or can be used to
combine conditions.

� String contants require single quotes and the percent symbol
(%) can be used as a wildcard. Also, the constant true and
false can be used.

Example 2 This SELECT query lists all book titles in the table
book that were published in 1999.

1 SELECT title FROM book

2 WHERE year=1999;

2.2 Some Exercises Using WHERE

Try to construct SELECT queries that will produce the following
results:

1. Display title, pages, and year of all books.

2. Display all fields in the book table that have fewer than 100
pages.

3. Display a list of all old (published before 1960), long (at
least 525 pages) books.

4. Show all fields in author table for authors whose last name
is “Ford”.

5. Show all authors whose last name starts with “Fo”.

2.3 Joining Tables

Up to this point we have not tried to combine information from
more than one table into a single query. It’s not hard to imagine
that you might want a list of books together with the names of
the authors of those books. The author names and the book titles
are in separate tables so we must join the two tables. There are
several ways to achieve this

Example 3 Here we list book titles and author names for all
books by performing a Cartesian product and then restricting the
results with a WHERE clause.

1 SELECT title, firstname, lastname FROM book, author

2 WHERE book.author_id=author.author_id;

NOTE: Observe the dotted notation to specify which author id

field we mean. This is necessary because both tables listed in the
FROM clause have a field named author id. What would happen

if we omit the WHERE clause?

ALSO NOTE: This query produces 1721 rows in our sample
data.

We can achieve the same results using an INNER JOIN opera-
tion as follows:

Example 4 Here we list book titles and author names for all
books by using INNER JOIN.

1 SELECT title, firstname, lastname

2 FROM book INNER JOIN author ON book.author_id=author.author_id;

When using a JOIN the conditions for joining the tables are given
in the FROM clause rather than the WHERE clause.

NOTE: This query also produces 1721 rows in our sample data.

The term INNER JOIN seems to imply the existence of an
“outer join” as well. It turns out that there are three types
of outer joins: FULL OUTER JOIN, LEFT OUTER JOIN, and RIGHT

OUTER JOIN. Up to this point we have been operating under the
implicit assumption that every book has a listed author and every
author in the database has a book. In some causes this may not
be a good assumption. Why not?

The INNER JOIN only shows query results for which that im-
plicit assumption is correct. Consider and view the results of the
following example:

Example 5 Here we list book titles and author names for all
books by using FULL OUTER JOIN.

1 SELECT title, firstname, lastname

2 FROM book FULL OUTER JOIN author ON book.author_id=author.author_id;

NOTE: This list has a significant number of NULL book titles
and a whopping 6022 rows in our sample data!

The reason for this is that there are, apparently, a large num-
ber of authors in the database who have no books in the book ta-
ble. The distinction between LEFT OUTER JOIN and RIGHT OUTER

JOIN are simply a matter of whether we want to include entries
with no matching values in the first listed table (i.e., the one on
the left . . . in this case book) or we want to include entries with
no matching values in the second listed table (i.e., the one on the
right . . . in this case author).

In this particular data set a LEFT OUTER JOIN produces the
same results as an INNER JOIN because there are no books with-
out an author in the book table. A RIGHT OUTER JOIN in this set
produces the same results as the FULL OUTER JOIN because there
are many authors without books in the book table.

The requirement of having to specify which field you want a
JOIN operation can be tedious. This tedium can be alleviated
by adding the keyword NATURAL in front of the join operator. A
“natural” join instructs the SQL engine to join the tables on the
columns whose names match. Consider this example:

Example 6 Here we list book titles and author names for all
books by using NATURAL INNER JOIN.

1 SELECT title, firstname, lastname

2 FROM book NATURAL INNER JOIN author;

NOTE: This list is united on the author id since both book

and author contain a field by that name.

The NATURAL modifier can be used with outer joins as well.

Database Systems Terry Sergeant

DB—SQL Page 3
2.4 Some Exercises Using JOIN

Try to construct SELECT queries that will produce the following
results:

1. Display title, pages, year, author first and last name of all
books.

2. Display all fields in the book and publisher tables that have
fewer than 100 pages.

3. Display a list of all old (published before 1960), long (at
least 525 pages) books. Include author name and publisher
name in the list.

4. Show all authors that don’t have a book associated with
them.

5. Experiment with inner, left outer, right outer, and full outer
and observe how the counts of queries change.

2.5 Aggregate Functions, GROUP BY, and HAVING

2.5.1 Aggregate Functions

� Aggregate functions can be used to apply some common
mathematical operations to a database column.

� Some aggregate functions include COUNT, SUM, MAX, MIN, AVG.

Example 7 This SELECT query uses an aggregate function to
count the number of books in the book table.

1 SELECT COUNT(title) FROM book;

Example 8 This SELECT query uses an aggregate function to de-
termine the age of the oldest book in the book table.

1 SELECT MIN(year) FROM book;

2.5.2 The GROUP BY Clause

This clause is often used in conjuction with aggregate functions
to group entries into subsets.

Example 9 This SELECT query uses GROUP BY to list show the
number of books for each publisher.

1 SELECT publisher_id, COUNT(title) FROM book

2 GROUP BY publisher_id;

2.5.3 The HAVING Clause

This HAVING clause serves the same basic purpose as the WHERE

clause, except that it can be applied to grouped results. Suppose,
for example, we wanted to show the number of books for each
publisher, but only for those who have more than 50 books to
their credit.

Example 10 This query uses GROUP BY, and HAVING to list show
the number of books for each publisher who has at least 50 books.

1 SELECT publisher_id, COUNT(title) FROM book

2 GROUP BY publisher_id

3 HAVING COUNT(title) >= 50;

2.6 The ORDER BY Clause

� This clause provides a simple way to organize the result of
any query by sorting them on one or more fields.

� When sorting on multiple fields, the DBMS uses a stable
sorting routine so that secondary fields are sorted within
“equal” values of the primary sort field.

� The key word DESC can be used to reverse the default order
of sorting.

� The ORDER BY clause can be applied to aggregate functions
as well.

Example 11 List all books from oldest to newest. Books in the
same year should be ordered alphabetically by title.

1 SELECT * FROM book

2 ORDER BY year, title;

Example 12 Show average book length for book published in the
same year. List those years with the longest averages first.

1 SELECT year, AVG(num_pages) FROM book

2 GROUP BY year

3 ORDER BY AVG(num_pages) DESC;

2.7 The SANTA Clause

In case you haven’t heard this from anyone before, let me be the
first to say: “There is no such thing as SANTA Clause.”

There are, however, a few “extra” features that would be nice
to know. When selecting a field you can rename it to make it more
descriptive. For example:

Example 13 Show average book length for book published in the
same year and given meaningful column names.

1 SELECT year AS "Publication Year",

2 AVG(num_pages) AS "Average Book Length"

3 FROM book

4 GROUP BY year;

Also, when checking to see if a field is null you must use the
keyword IS rather than the equal sign as follows:

Example 14 List authors with no first name.

1 SELECT * FROM author

2 WHERE firstname IS NULL;

Finally, when using wildcards (% to match multiple characters
or to match a single character) you must use the keyword LIKE

rather than the equal sign as follows:

Example 15 List all titles that begin with the word “The”.

1 SELECT * FROM book

2 WHERE title LIKE ’The%’

Database Systems Terry Sergeant

DB—SQL Page 4
2.8 Some Exercises Using GROUP BY, HAVING, and

ORDER BY

Try to construct SELECT queries that will produce the following
results:

1. Produce a list of book titles and publisher ids sorted by
publisher id and then by title.

2. Display the length of the longest book for each publisher id;
sort the results in descending order of book length.

2.9 Creating Subqueries

Some queries require as conditions, results from other queries. You
can write a query with a query inside of it.

Example 16 Write a query that will list all books that have at
least as many pages as the longest book written in the 1970’s.
First it would be useful to find out how long the longest book in
the 1970’s is. We might accomplish that result like this:

1 SELECT MAX(num_pages) FROM book

2 WHERE year>=1970 and year<1980;

Execution of this query on our sample data produces the value
550. With that value in hand we can construct the following query
to obtain the answer we’re looking for:

1 SELECT * FROM book

2 WHERE num_pages >= 550;

Of course, it is not very satisfying to write two separate queries
and to have to remember the result of one and hard-code that
value in the second. One solution is write nest queries as follows:

1 SELECT * FROM book

2 WHERE num_pages >= (SELECT MAX(num_pages) FROM book

3 WHERE year>=1970 and year<1980);

It should be noted again, at this point, that SQL is a free-
format language. So, the indentation in this example is not re-
quired, but simply improves readability.

2.10 Creating and Using Views

A little bit of imagination should convince you that it can be-
come difficult to construct a correct query when queries are nested
within queries 5 levels deep. SQL allows you to name a query. A
named query is called a view. Once a view is created it can be
invoked by name as if it is a table. The view can be used as part
of other queries. This allows abstraction of possibly complicated
results to be used as building blocks for even more complicated
results.

Example 17 Consider the previous example of writing a query
that will list all books that have at least as many pages as the
longest book written in the 1970’s. First we can create a view
named longestof70s. NOTE: This step of creating the view
needs only to be done once. Once the view is created it can be
invoked using it’s name.

1 CREATE VIEW longestof70s AS

2 SELECT MAX(num_pages) FROM book

3 WHERE year>=1970 and year<1980;

Now the final query can be simplified as follows:

1 SELECT * FROM book

2 WHERE num_pages >= (select max from longestof70s);

It is common the create views for any queries that will be used
repeatedly.

2.11 Some Exercises Using Subqueries and
Views

1. Display all books longer than the longest written by the au-
thor whose id number is 4159.

2. Create a view called prolific authors that lists the id
numbers and number of books of all authors who have writ-
ten more than 5 books listed in the database.

3. Using the view just created write a query that will list the
names of all the prolific authors. HINT: The WHERE clause
can use the IN operator to determine membership in a list.
(e.g., WHERE id IN (some list of id numbers))

2.12 Some More Exercises

1. Show all fields of books and authors for those books whose
authors have no first name;

2. Count the number of authors who have no books in the book
table.

3. Create a view called allinfo that shows all fields of the
book, author, and publisher tables joined (inner) on the
appropriate fields; the results should be ordered by author
(lastname then firstname) and then by title.

4. Use the allinfo view as a basis for listing all fields of
that view for books published by American Publishing

Co. (whose id is 5).

5. Show the length of the longest book for each publishing com-
pany together with publisher id, company name and loca-
tion; sort results in order of book length (longest books first).

6. List all publishers (in descending order of count) who have
published at least 25 books before 1960.

7. List authors (along with their average book length) whose
average book length is at least 450 pages; order by author
name.

8. Repeat previous query but only include authors who have
authored more than one book.

3 DELETE, INSERT, and UPDATE

All of the queries we’ve done so far simply allow us to extract
lists from the existing database. SQL also provides commands for
modifying the content of the database.

Database Systems Terry Sergeant

DB—SQL Page 5
3.1 DELETE Queries

The SQL command to remove rows from a table has this form:

1 DELETE FROM table

2 WHERE conditions

WARNING: This command can delete many rows depending
on the criteria specified:

Example 18 Delete all books published by American Publishing
Company.

1 DELETE FROM book

2 WHERE publisher_id=5;

Example 19 Delete all books whose author doesn’t have a first
name.

1 DELETE FROM book

2 WHERE author_id IN

3 (SELECT author_id FROM author

4 WHERE lastname IS NULL);

IMPORTANT: It is highly recommended that you construct a
SELECT query to identify the entries you want to remove. Once
you are certain you are selecting the correct group of records, then
modify the SELECT query to become a DELETE query.

3.2 INSERT Queries

INSERT queries allow you to add a row to a database table. The
basic form for INSERT is this:

1 INSERT INTO table (field-1, field-2, ..., field-n)

2 VALUES (value-1, value-2, ..., value-n)

Example 20 Insert a new publisher into the publisher table.

1 INSERT INTO publisher (publisher_id,name,location)

2 VALUES (15,’Gorgonzola Publishing Co.’,’Naples, Italy’);

NOTE: This particular table does not perform autonumber-
ing of id numbers for new entries. Thus, we had to specify an
id number that did not conflict with existing id numbers. If the
publisher id field was an autonumbering field then the word
default could have been used in place of the number 15.

ALSO NOTE: The order of fields listed after the table name
must match the order given after the VALUES clause. The field
order does not, however, have to match the order in which the
fields appear in the database. If the fields do appear in the order
saved in the database then the list of fields can be omitted.

Example 21 Insert a new publisher into the publisher table
but this time we assume that publisher id is an autonumber
field and that we know the order of fields as they are stored in the
database.

1 INSERT INTO publisher

2 VALUES (default,’Gorgonzola Publishing Co.’,’Naples, Italy’);

3.3 UPDATE Queries

The basic form of an UPDATE query is as follows:

1 UPDATE name-of-table

2 SET column1-name=expression1,

3 column2-name=expression2,

4 . .

5 . .

6 . .

7 WHERE condition

Example 22 It should be noted that the UPDATE can apply to
a single row as in this example.

1 UPDATE author SET firstname=’Iam’,lastname=’Windy’

2 WHERE author_id=7

Example 23 Alternatively, multiple rows can be targeted by
having a more inclusive WHERE clause. WARNING: If we omit
the WHERE clause altogether the query will affect all rows in the
table!

1 UPDATE books SET author_id=7 WHERE num_pages > 400

4 CREATE and DROP Queries

In section 3, the queries examined were used to modify the con-
tents of existing tables. The CREATE and DROP queries allow the
creation new tables and deletion of tables, respectively.

4.1 CREATE Queries

The basic form of a CREATE query is as follows:

1 CREATE TABLE name-of-table (

2 field-1 type-of-field-1 [modifiers],

3 field-2 type-of-field-2 [modifiers],

4 . . .

5 . . .

6 . . .

7 field-n type-of-field-n [modifiers],

8 [integrity-contraints]

9);

Consider one possible way to create the book table we’ve been
using in our examples:

Example 24 Create a book table with fields named isbn, title,
author id, num pages, publisher id, and year. Also mark isbn

as the primary key.

1 CREATE TABLE book(

2 isbn CHAR(11),

3 title VARCHAR(80) NOT NULL,

4 author_id INT NOT NULL,

5 num_pages SMALLINT,

6 publisher_id INT,

7 year CHAR(4),

8 PRIMARY KEY (isbn)

9);

Database Systems Terry Sergeant

DB—SQL Page 6
The appearance of NOT NULL following the type for title and for
author id instruct the DBMS to prevent a row from being added
unless values for these fields are provided. Another common modi-
fier is UNIQUE which requires that no other row contain a matching
value for this field.

The final statement PRIMARY KEY(isbn) is an integrity con-
traint that marks the isbn field as the primary key. This designa-
tion imposes the restrictions that the designated field cannot be
null and must be unique.

NOTE: There are several integrity contraints besides PRIMARY
KEY that we’ll learn at a later time.

ANOTHER NOTE: Rules regarding table names are DBMS-
dependent. In PostgreSQL named can be composed of letters,
digits, and underscore symbols. I personally recommend that you
use only lowercase letters in PostgreSQL because it requires that
you put quotation marks around every field and table name con-
taining uppercase letters.

There are also a variety of field types available. Most of the
types described in the table below are standard SQL types with
the notable exception of the SERIAL type.

Type Description
CHAR(n) exactly n characters
VARCHAR(n) up to n characters
INT integers (range is specified by DBMS)
SMALLINT integers but with restricted range
NUMERIC(p,d) a fixed point number with p digits and d

decimals
REAL floating point numbers (range specified by

DBMS)
FLOAT(n) floating point numbers with up to n digits
DATE year, month, date
TIME time of date with hours, minutes, seconds
TIMESTAMP date and time together
SERIAL PostgreSQL type for autonumber field;

the underlying type is INT with a de-
fault modifier that makes use of the Post-
greSQL nextval function

4.2 DROP Queries

Removing table is, obviously much simpler than creating them.
The form of the DROP query is this:

1 DROP TABLE name-of-table;

As with the CREATE command, the syntax implies that we
might be able to “drop” elements besides tables (e.g., views).
Some tables have integrity contraints that may require other ta-
bles to be dropped first.

Database Systems Terry Sergeant

