
DB—Overview of Database Systems Page 1

Overview of Database Systems
by Terry Sergeant

Contents

1 Introduction 1
1.1 Definitions . 1
1.2 Rationale . 1

2 Topics in Database Systems 1
2.1 Database Design and Use 1
2.2 Database Programming 2

2.2.1 SQL . 2
2.2.2 General-Purpose Programming 2

2.3 DBMS Implementation 2
2.4 Database Administration 2

3 A Quick Example 2
3.1 An ER Diagram 2
3.2 A UML Diagram 3
3.3 A Tabular View . 3
3.4 Some Things We Might Do 3

1 Introduction

1.1 Definitions

At the most basic level a database is a collection of data. A
database typically has a well-defined structure that accompanies
and organizes the data to make it accessible. “A database man-
agement system (DBMS) is a collection of interrelated data
and a set of programs to access those data.” (Silberschatz, et al)

1.2 Rationale

Databases are widely use to organize data in virtually every sector
of business and research. Examples: banking, airlines, universi-
ties, credit cards, etc.

Imagine being a programmer for a bank that wants to keep
track of customer contact information and account information.
If you were a programmer implementing programs for the bank
you would have to not only worry about the user interface, but
how to represent information and store it in files. Consider some
of the issues you would have to address:

• Selecting file type and organization is a significant un-
dertaking. Any time there needs to be a change in file struc-
ture all programs that use the file will need to be rewritten.
In addition, writing robust routines to handle reading from
files in the case of missing or incomplete information is dif-
ficult.

• Data redundancy can occur if you store a contact phone
number in two separate locations. Redundancy opens the
door for inconsistency and update issues.

• Changing user needs would require involving a program-
mer to create or modify a program to produce the desire
list.

• Enforcing rules for valid data values would be needed
in order to prevent bogus entries. For example, an account
number would need to follow a certain format and the pro-
grammer would have to perform significant error checking
to validate user entries.

• Handling concurrent access is a surprisingly difficult
problem to solve correctly. Many applications, including
banking, would need to allow multiple tellers to access the
same account concurrently. Give an example of what can

happen if two tellers are modifying the same account

concurrently.

• Making transactions atomic is needed to ensure a con-
sistent state. What does “atomic” mean in this context.

Consider a transaction to transfer funds . . .

• Maintaining security in a large system with many levels
of users is an important and necessary task. For example,
you don’t want every user to be able to view or modify every
piece of information in a bank’s database. Can you think of

examples of this in university databases? HR databases?

Many modern DBMSs provide built-in mechanisms to handle
these issues for the programmer so that their focus can shift from
implementing solutions to these difficult problems to making the
user-interface accessible.

2 Topics in Database Systems

2.1 Database Design and Use

We will learn to use three DBMSs this semester:

MS Access is a standalone (one-tier) DBMS designed to be sim-
ple to use and optimized for small databases. It provides a
rich set of tools for implementing user-interfaces.

PostgreSQL is client-server (two-tier) DBMS that provides ad-
vanced features and is designed to handle large databases.

MongoDB is a widely deployed non-relational database manage-
ment system that is often used as a backend to web appli-
cations.

There are several models used by various DBMSs to organize
data. Some common models are:

Relational Model This is (currently) the most commonly used
model and will be the focus of this course. Databases based
on this model organize information into two-dimensional ta-
bles (with various restrictions). The process of normalizing
a relational databases during the design phase is important.
MS Access and PostgreSQL are relational DBMSs.

NoSQL This is a loosely defined category of models that have
risen from databases developed for high-traffic web sites.
Databases based on a NoSQL model do not provide the same
level of consistency guaranteed by the relational model, but
in exchange provide better performance.

XML This method of organizing data is more relaxed than the
relational model and is primarily used as a backend data
exchange format by (typically) legacy applications. Data is
stored as plain text.

Database Systems Terry Sergeant

DB—Overview of Database Systems Page 2
2.2 Database Programming

Relational DBMSs almost universally allow programming of the
database in the form of a non-procedural language called Struc-
tured Query Language (SQL). In addition, many DBMSs
allow access via general purpose programming languages (e.g.,
C++, Java, Perl, Python, VB, etc.) by way of standard inter-
faces such as ODBC or JDBC.

2.2.1 SQL

SQL is implemented (to some degree) in virtually every mod-
ern relational DBMS. There are some variations among different
DBMSs, but in general, if you learn SQL you can get around in
any DBMS. SQL statements are categorized as follows:

Data Manipulation Language (DML) These are commands
that allow you to view contents of the database (i.e., per-
form queries) and to insert, remove, and modify database
entries.

Data Definition Language (DDL) This is the part of SQL
that allows you to create or delete tables and modify the
structure of the database.

Data Control Language (DCL) These commands are used by
a DBA to deal with database users and to assign access per-
missions, etc.

2.2.2 General-Purpose Programming

SQL is good for manipulating the database itself. Providing user-
interfaces (such as through a web page) is typically done by using
other tools or languages. Thus, there is a need for procedural,
high-level programming languages to be able to converse with
a DBMS. Two widely used standards for bridging that gap are
ODBC (Open Database Connectivity) or JDBC (Java Database
Connectivity).

2.3 DBMS Implementation

There are three levels of data abstraction relavent to the study of
database sytems:

• The view level is the level at which typical database end-
users interact with the database. They are concerned with
the lists and other information produced by the database
and are not concerned with underlying structure. There can
be many views depending on user needs.

• The logical level deals with the way in which tables have
been created and relationships established. DBAs and ap-
plications programmers view the database at this level. The
organization of the database which has been defined at this
level is sometimes called the schema.

• The physical level has to do with the way in which files are
arranged and stored on the underlying secondary storage
device so as to allow efficient retrieval. Typically, only a
DBMS programmer is concerned with this level.

Storage management (physical level) is just one concern with
regards to the implementation of a DBMS. Other issues include
details related to how queries are processed, query optimization,
and transaction management. What do we mean by “transac-

tion” and why does it need to be managed?

2.4 Database Administration

A database administrator (DBA) is a person who is charged
with managing a database. This can include the design and pro-
gramming of the database. In addition a DBA would be respon-
sible managing users, establishing security settings, making back-
ups, and meeting the needs of the database users. Virtually every
topic discussed this semester will be relavent to being a database
administrator.

3 A Quick Example

The example database given here is used to introduce some termi-
nology and to help “grease the skids” for some the more thorough
treatment of these topics that will follow.

Suppose you want to store information about your favorite mu-
sic albums in a database. Suppose that you will store the following
information for each album: album title, album year, genre, artist
name, artist hometown. We’ll discuss methods for database de-
sign later, but for now suppose you intend to use three tables to
represent this information: Artist, Genre, and Album.

3.1 An ER Diagram

One way to represent our proposed database is using an Entity-
Relationship (ER) diagram. The conventions for this type of dia-
gram are:

rectangles represent entities (i.e, tables)

ovals represent attributes (i.e, fields); an underlined name sig-
nifies a primary key (more on keys in a minute)

diamonds represent relationships

lines show connections or membership; an arrow represents the
cardinality of a relationship (one-to-one, one-to-many, etc.)

artist_id year

creates has a

Album

title genre_id

Genre

id genre
name

Artist

id hometown

Spend some time examining this.

The ER diagram simply gives a pictoral view of the proposed
(or actual) design of a database. The database design/structure
is sometimes called the database schema. The schema refers to
the design of the database, not to the contents of the database.

Database Systems Terry Sergeant

DB—Overview of Database Systems Page 3
3.2 A UML Diagram

UML is used in many disciplines including database design. The
UML conventions for representing databases are:

• Each table is represented as a rectangle with the name of
the table at the top.

• The fields of each table are listed in the rectangle below the
name.

• Relationships between tables are designated with lines con-
nected a field in one table to a field in another. The ends of
the line are plain if it represents a “one” and three-pronged
if it represents “many”.

• Primary key fields are underlined.

Spend some time examining this.

UML diagrams are another way to provide a pictoral view of
a database design.

3.3 A Tabular View

Suppose that we have inserted the following records into the tables
in our database:

Artist
id name hometown

1 Dog Man Coyote, Wyoming
2 The Computing Whiners Seattle, Washington
3 Soul Screech Boston, Alabama

Genre
id genre

1 Rock
2 Pop
3 Jazz

Album
artist id title year genre id

1 Howling Knights 2003 3
1 Woof, Woof to You Too! 2004 2
1 Puppy Love 2005 3
2 Are You My Motherboard? 2003 1
2 CPU Burnin’ 2005 1
3 Stop the Pounding in My Brain 2003 1

Spend some time looking at the arrangement of these ta-

bles. Can you make sense of the Album table? Spend a moment

to compare the tabular representation of the database with

the ER diagram.

A key is a field (or collection of fields) that is sufficient to
uniquely identify a record. In the ER diagram the id field of the
Artist table and the id field of the Genre table we designated
to be key fields. What field(s) might be used as a key in the

Album table?

3.4 Some Things We Might Do

The arrangement of data into three tables is helpful in that the
tables conform to the definition of a relation (which in turn al-
lows us to apply a variety of mathematically defined operations
in order to extract information). This arrangement is, by itself,
not that helpful for provide usable information to a typical user.
One of the primary reasons for using a database is for the purpose
of allowing users to extract information easily. This is typically
done by creating views (or queries). Here are some examples of
information we might want from our database:

• List all albums along with the artist name and genre name
(and order the list by album year, then by album title).

• List all albums in 2003 (or prior to 2003).

• Count how many “Rock” albums there are.

• List all artists from Coyote, Wyoming.

We will learn how to construct databases and queries in

more than one DBMS.

Database Systems Terry Sergeant

